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ABSTRACT

The signal detection characteristics of a two-input channel receiver

are studied. The signals received on both channels are random Gaussian,

narrowband processes identical except for a known channel-to-channel

time delay. For narrowband representation, the time delay is treated as

a differential phase modulation of the two signals. The noise on each of

the two receiver channels is also random Gaussian processes which are

jointly wide sense stationary and correlated. The receiver detects the

presence of a signal by estimating the average phase difference between

samples of the observed signals. The average phase is an input to a

matched filter detector where the filter is matched to the known phase

between the input signals. The receiver is intended to detect at signal-

to-noise ratios less than 0 dB and over a wide range of noise correlation

conditions.

The theoretical statistics required to predict the detection per-

formance are developed. The receiver operating characteristic curves

are generated from the likelihood functions at the matched filter output.

An example of a possible signal phase function is considered and the

receiver performance predicted.

The performance of the signal phase matched filter receiver is

compared with a cross correlation receiver which includes a noise

decorrelator and signal phase compensator. The cross correlation receiver

is more sensitive than the signal phase matched filter receiver if the

noise correlation is known. However, if the noise correlation is unknown

..
I ... - - --
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and the detection is made using fixed signal processing and detection

threshold, the signal phase matched filter receiver gives superior

performance.
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CHAPTER I

INTRODUCTION

1.1 Source of Detection Problem

Radiation from a moving source produces a varying time delay between

signals received by two sensors which are separated by a baseline. If

the geometry of the moving source and the sensors is known, the varying

time delay can be predicted prior to detection of the signals. A

receiver which uses this known, varying time delay as a basis to detect

the presence of a signal source moving on a known course through a field

of stationary interfering noise sources has been investigated and its

detection characteristics have been defined.

Figure 1-1 shows a signal source which is passing with a known motion

through a field of stationary noise sources. The moving source radiates

a Gaussian signal which is received by two physically separated, narrow-

band sensors. The time delay between the Guassian, narrowband signals

at the sensor outputs is determined by the source motion and the relative

geometry of the source and sensors. The time delay is treated as a phase

delay in expressing the received, narrowband signals.

The presence of stationary interference noise sources in an isotropic

Gaussian background noise field results in an anistropic noise field.

This anistrophic noise combines with the electrical noise of the sensors

such that the noise at the filtered sensor outputs is correlated. The

sensor output noise is stationary and Gaussian with unknown power level.

This research studied the detection problem after the reception of

the signals and noise by the two sensors. The problem investigated is
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STATIONARY, INTERFERING
NOISE SOURCES

MOVING*SIGNAL SOURCE

(t) r (t) AVERAGEDECTO

FIGURE 1-1. Moving Signal Source Detection Problem.
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the signal detection characteristics of a receiver with two input channels.

The signals in both channels are narrowband, random, Gaussian processes

which are identical except for a known, time varying phase delay. The

input noise is correlated, Gaussian noise of unknown power level. The

receiver detection process estimates the average phase difference between

the observed signals in the two receiver input channels. The estimated

average phase is an input to a detector which is an approximation of a

matched filter detector for the known phase delay between the desired

input signals.

1.2 Assumptions and Limitations

The signal detection system is intended to function at low signal-

to-noise ratios and over a variety of noise correlation values. The

signal processing is to be implemented using digital techniques. These

factors and the nature of the original detection problem result in a

number of assumptions. Any limitations imposed by these assumptions

must be considered when interpreting the results.

The received signal is a stationary narrowband, zero-mean Gaussian

stochastic process. The signal in one input is a phase-shifted version

of the signal in the other input. The signal power level is equal in

each input. The time varying phase delay between the input signals is

known. The bandwidth of the input signals is much greater than the band-

width associated with the time varying phase delay.

The noise in the two inputs is jointly stationary, correlated, zero-

mean, narrowband Gaussian noise. The power level of the noise is unknown,

but it is the same in each input. The detection process is investigated

for both known and unknown noise correlation cases.
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The system is intended to detect at signal-to-noise ratios less

than 0 dB. The signal-processing interval is selected to be long enough

to achieve this goal.

The inputs are sampled and digitized. It is assumed that the

sampling period is adjusted to the input bandwidth such that sequential

samples are statistically independent.

1.3 Background

Detection of a Gaussian signal in Gaussian noise has been widely

investigated in the past [1], [2], [3]. The likelihood detector is

commonly used to detect signals which are not completely known. If the

input noise is correlated, the likelihood detector can be implemented

using a noise de-correlator or spatial prewhitener [4]. These investiga-

tions assumed the noise power level and noise correlation were known.

If the power level is unknown, a detector can be implemented consisting

of two channels [5], [6]. One channel has the form of a likelihood ratio

detector and the other channel is a minimum variance power level estima-

tor. With two inputs, this detector takes the form of a cross correla-

tion detector. Source motion causes degradation in the output of the

correlator, unless the correlator implements a compensation delay

modulation, [7], [8].

Based on the above background, a receiver which could be used to

solve the detection problem would consist of a noise decorrelator, time

delay compensation modulator and cross correlation detector. Such a

receiver requires that the noise correlation be known in order to obtain

maximum sensitivity.
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An alternative to the classical likelihood detector is a receiver

which estimates the phase between the signals at the filtered sensor

outputs. The signal is then detected using a matched filter detector

[9]. The filter is matched to the known phase delay. This alternate

recever is analyzed and its detection characteristics determined.

1.4 Organization

Chapter II contains a detailed description of the detection problem.

The generalized received signal and noise model is explained. This is

followed by a description of the methods of estimating phase difference

and a description of the matched filter detector.

The theoretical statistics required to determine the detection

system performance are developed in Chapter III. These statistics are

a function of the input signal-to-noise ratio and the correlation

characteristics of the noise in the two channels of the receiver. Major

emphasis is placed on the statistics of the average phase estimate. The

material in this chapter forms the theoretical basis for understanding

the signal detection problem.

In Chapter IV, the receiver detection characteristics are determined

for a linear phase delay function. The matched filter configuration is

described, the effect of phase averaging examined and the theoretical

detection curves generated. The above assumes the noise correlation is

known. The chapter ends by investigating detection performance for the

unknown noise correlation case.

A performance comparison with the cross correlation detector is

made. This performance comparison, is made for both known noise
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correlation and unknown noise correlation cases. The cross correlation

detector with noise de-correlator and phase shift compensation is

described in Appendix B.

Conclusions and recommendations are contained in Chapter V.
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CHAPTER II

DETECTION PROBLEM

Detecting a dual channel differential phase modulated signal in

the presence of correlated noise is a problem in selecting one of two

possible hypotheses, the desired signal is present or the desired signal

is not present. The receiver being studied uses the Neyman-Pearson

criterion [10] to test the hypotheses. This criterian maximizes the

probability of detection for a given probability of false alarm. The

observable signals at the receiver inputs may be of two forms:

rl(t) = {} + nl(t)
s(t)

r2 (t) or + n2 (t)

{s t--(t}

where r(t) = observable signal

s(t) = desired signal

n(t) = noise

T(t) = time delay.

The receiver is designed to operate on the observable signals and select

either the null hypothesis, Ho , or the alternative hypothesis, H1 .

Symbolically these hypotheses are:

f rl(t) = nl(t) , 0 i t T T

H: (2-1)
0 r2 (t) = n2 (t) , 0 I t , T

I " ... .. .. ' . ... : __" ..... -Ain , I ,. .
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rl(t) = s(t) + nl(t) , 0 t s T
HI: (2-2)

r2 (t) = s[t-Ts(t)] + n2 (t) , 0 4 t s T

where T = period of s(t).

Figure 2-1 shows a block diagram of the receiver being studied.

The receiver consists of four basic blocks. The observed signals are

sampled and digitized. An estimate is made of the average difference

between phases of the two observable 9equences. The resulting average

phase sequence is an input to a matched filter. The transfer function

of the filter is matched to the differential phase shift between the

desired signals received in the two input channels. If the filter output

exceeds a threshold, the H1 hypothesis, signal present, is selec-ed. If

the threshold is not exceeded, the H hypothesis, no signal present, is

selected.

2.1 Signal and Noise Model

The signal-noise model for the generalized detection problem is

shown in Figure 2-2. The noise sources n (t), n (t) and n (t) are always
u v

present. The signal s(t), which may or may not be present, is a random

narrowband Gaussian process with zero mean. A random process is narrow-

band if its spectral density is zero except for a narrow region around

a high carrier frequency [11]. The received signal can be expressed as:

s(t) s c(t) cos w ct - s (t) sin w t (2-3)

w
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where s C(t) - the in-phase component of s(t)

s (t) - the quadrature component of s(t)

W = - the center frequency of the narrowband spectral

density of s(t).

It is assumed that the maximum rate with which the time delay, T (t),
s

varies is very small when compared to the inverse of the signal band-

width. The signal bandwidth is defined by the receiver passband. The

in-phase and quadrature components of the time-delayed signal can there-

fore be considered to be:

S c[t-T s(t)] - S c(t)

Ss[t-Ts(t)] = Ss(t).

The time-delayed signal is approximated as:

s[t-T s ( t)] Z sc(t) cos [ct-WcTs(t)] - s (t) sin [Wct-Wc S(t)].

If the w CT s(t) is considered to be a variable phase,

Cs(t) = WcTs(t),

the time delayed signal may be expressed as:

s[t-T(t)] = sc(t) cos [W t-s(t)] - s(t) sin [Wt-()] . (2-4)

The signals in the two channels of the receiver are expressed as:

S1(t) = S (t) Cos W t - s (t) sin w tSt c~t co c s c

(2-5)

S (t) = S(t) cos [ (t)- ss (t) sin [Wt-0s(t).s2( c  c-sI

I.A
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The total received noise is the sum of the contributions from the

receiver electrical noise, the isotropic noise field and all stationary

interference sources. The received noise is represented by three

independent noise sources in the signal-noise model. The noise in each

channel can be considered to be the sum of a common or fully correlated

component and an independent component. The independent components are

represented by nu(t) and n v(t). The common component is nI(t). The

fixed time delay Tn associated with n1 (t) is a composite of the time

delays of all the interference sources.

As these noise sources are independent random narrowband processes,

they can be expressed:

nu (t) = nuc (t) cos w ct - nus (t) sin wc t

n (t) = n C(t) cos w t - n (t) sin w t

(2-6)
nI(t) = nc(t) cos w ct - ns(t) sin c

n (t-T ) cos (W t-0.) - nl(t) sin (wtt-0l)

where

W cn

Using the above narrowband representation, the noise in the two receiver

channels is:

" 1(t) .. [n (t) + n1Ct)] ICos W ct n [us (t) + n IS(t)JI sin w ct

n2(t) = nvc(t) + nIC(t) cos I + nIs(t) sin cos WCt (2-7)

-[nvs(t) - nIc(t) sin j + n1s(t) cos 4t] sin c t

L -- . .. .. . . ." -. i,* l
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The in-phase and quadrature components of n1 (t) and n 2(t) are:

nlc(t) = n uc(t) + nlc(t)

"nls(t)= nus(t) + n1s(t)

(2-8)

n2c(t) = n vCt) + n1c(t) cos I + ns(t) sin I

n2 st) nvst) - n i(t) sin + ns(t) cos I

The mean, variance and covariance of the in-phase and quadrature

components of the noise are important parameters in determining the

detection statistics. It is assumed that the receiver is designed such

that the power level of the noise in each channel is equal.

02 = a (2-9)u v

Since the noise sources are all assumed to be zero mean processes, the

mean values of the noise components are:

E{nl(t)} = E{n (t)} = g{n(t)} {n = 0 ; (2-10)

IIs2c n 2

the variances are:

E~nl2 W} = a 2 + a12 2

2 2 2 2E{n (t) = o + a, = als u N (2-11)

E{n2c 2 (t)} = v2 + a12 (cos 2  + sin 2  a N 2

E{n 2 W} = av2 + a12 (sin
2  + Cos2 2

ls v I1 co N%
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where

a 2 AE{n 2(t)

2 2avA2 E{n (t)}
V = V

a2 E{n2 (t)

and the covariances between components are:

E{n lc(t) nls(t)} = E{n 2c (t) n2s(t)} = 0

2E{nlc(t) n 2c(t)} A a I  cos I

E{nlc(t) n2s(t)} l lc,2s =a 12 sin 1 (2-12)

E{nl(t) n2 (t)} A = a 2 sin 1

is 2sc = ls,2s I I~'E{n ls (t) n 2s (01} Uls,2s aI 12Cos I

When one defines

2
at

oN  2- cs
aN

2
x ' sin 4

a N (2-13)
2

2 2 2 1-2

N~ N 2

-N

ON tan
N
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the covariances become

11c,ls = '2c,2s = 0

2 2

Plc,2c = 1 ls,2s = ONON = ON KNScosN (2-14)

= =XNO2 2-1c,2s 1 s,2c a 2 = aN KNC°S N

Thus, the noise in the two channels of the receiver is correlated.

The observable signals are the sum of equations (2-5) and (2-7).

Using the noise components defined by equations (2-8), the observable

signals become:

r 1(t) = [s c(t)+n1 l(t)] ICos W ct s [s (t)+n 1 l(t)]I sinw t

r2 (t) sc(t) cos s(t)+s(t) sin s(t)+n2c(t)I c t (2-15)

- -Sc(t) sin os(t)+s(t) cos ,s(t)+n2s(t)] sin ct

2.2 Sampling

The observable signals rl(t) and r2(t) are quadrature sampled.

Quadrature sampling of a narrowband signal is equivalent to sampling of

the analytic signal or preenvelope [12). Quadrature sampling is shown

in Figure 2-3. The analytic signal r (t) is formed by the complexpI

function

r (t) = r(t) + j r(t)
p

where r(t) is theHilbert Transform of r(t). For a narrowband signal
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r(t) the analytic signal is:

r (t) [r (t) + j r (t)] ejCt

The analytic signal is sampled to obtain the complex low pass signal

r c(t) + .j r s t). Thus, the sampled signal is:

r P(n) = r c (n) + j r s(n)

The sampling is at a rate which is equal to or greater than the inverse

of the bandwidth of the low pass signal [13].

After quadrature sampling, the observable signals can be expressed

as:

r P1 (n) s [c (n) + n1 C(n)]I + j Is s(n) + n ls(n)]

rp2 (n) s [c (n) cos 0 s(n) + s s(n) sin 0 s(n) + n 2c(n)] (2-16)

+ j [-sc (n) sin 0 s(n) + s s(n) cos 0 (n) + n 2s(n)]

The complex sequences r pl.(n) and rp2 (n) may be expressed in terms of

their amplitude and phase,

r 1 (n) A A1(n) eij1(n) (2-17)

where

A 1(n) = S 4c(n)+n 1 C(n)I 2 + [s s(n)+n ls(n) 2}/

s (n) + ()1

= t n c (n) + nIC (n)

and

r 2(n) A A2(n) ej2(2-18)
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where

A2 (n) = { c(n) cos s(n) + s(n) sin o(n)

+ [-s c (n) sin rs(n) + Sc(n) cos s(n) + n2s(n)] 2 1/2

= tan1 -sc(n) sin s(n) + sc(n) cos ts(n) + n 2s(n) 1
2 n  c(n) cos P (n) + s(n) sin (n) + nc(n)

2.3 Average Phase Estimate

It has been noted that the bandwidth of the received signal is

assumed to be much greater than the bandwidth of the time delay function.

Therefore, processing of the estimated phase difference between rp1 (n)

and rp(n) may be simplified by averaging. Two methods that can be used

to make an average phase estimate are shown in Figure 2-4. These two

methods are identified as angle average and vector average.

If the complex conjugate of rp2(n) is multiplied by rpl(n) the

product will bL:

e(n) = rp1 (n) rp2 (n)

= A1 (n) A 2 (n) ej[l(n)_O2(n] 
(2-19)

Thus, the phase of e(n) is the phase difference of sequences r l(n) and

rp2(n). Assuming that no noise is present, the s.gnal phase in each of
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the receiver channels is:

l(n) = tan- [ ss(n)]

-I= tan- s (n) cos s(n) - s (n) sin s(n) 2-20)
sc (n ) cos n(n) + s(n) sin s(n) 3

-i (n) r sin )

= tan- S cs (n)f

I (n) cos (n)

Since

tan tan a - tan ,i + tan a tan

the phase in channel 2 is

2 = 1 (n) - s(n) (2-21)

The phase difference is then

- !2(n) = (n) (2-22)

The phase of e(n) is the difference between the phase of the signals

in the two receiver channels. When noise is added to the observable

signal, the assumption that the phase of e(n) is the desired signal

phiase difference is no longer certain.

To estimate the average phase of the complex sequence e(n), the

sequence is first divided into its real and imaginary components. If

e(n) = e(n) ej
(n )
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then

X(n) _ Re [e(n)] = Ie(n)j cos ON(n) (2-23)

Y(n) I Im e(n)] = Ie(n) sin .N(n) (2-24)

To obtain the angle average phase, ' the phase of the individual

samples is calculated and then averaged.

N -1
a tan- IY(n)) 

(2-25)
a n=O

The vector average phase is calculated by first averaging the real and

imaginary components and then calculating a phase from these average

vector components

N -1

nl Y(n)

va = tan N- j (226)a

X(n)

The average phase statistics will be studied in Chapter III.

2.4 Matched Filter Detector

The matched filter transfer function is defined to be:

H(jw) S*(jw) e- jwT (2-27)

where S(jw) = the Fourier transform of the desired signal

T = processing interval.

If the signal has a period T and is sampled and expanded in a Discrete

Fourier Series [141, the digital equivalent to the matched filter
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transfer function is:

H(k) = S*(k) (2-28)

where H(k) = inpulse response or transfer function of discrete

time matched filter

S(k) = coefficients of discrete Fourier series representation

of S(m).

The input to the matched filter is the average phase sequence

a(m). For the desired signal, the phase sequence a (m) would be the

signal phase s(m) corresponding to the known time delay rs(t). There-

fore, the frequency response of the desired signal is:

N -1. 27km
F- -NF

Cs (k) = W (m)e , 0 _< k N -I (2-29)
M=O

where NF = period of Discrete Fourier Series.

The Fourier coefficients of input to the matched filter are:

NF-1 . 27rkm
C (k) - - a(m) e-3  N , 0 k < N- (2-30)

a0 F F_(-0

The Fourier transforms can also be expressed in terms of the sine and

cosine components.

C s(k) = a (k) + j b (k)

5 s s

C (k) = (k) + j be(k)

The output of the matched filter, XT9 is

NF-1
F

T= N F k= C(k) C s*(k) (2-31)

F =
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Expressing equation (2-31) using the sine and cosine Fourier components

NF-1

x= a,(O) as (O)+ a [a (k)+jb (k)] [a(k)_Jb(k)]

N -1

XT s aO i 1:1 [a(k) as(k) + b (k) bs(k)]

k~k=1N F-1l k k
N F - [a.(k) b(k-a()

For a real sequence, the cosine terms are even functions and the sine

terms are odd functions

a(k) = a(n-k)

b(k) = -b(n-k)

Therefore, the output of the matched filter can be expressed as

NF

- _ 1
22

XT = a(O) as() + NF2i [ a(k) as(k) + b (k) bs(k)
F k=1 (

NF  NF
+ a (- ) a(-j) N even

If the as(0) and as(N) terms equal zero, the output of the matched

filter is
NF
- -l

1 2
-F 2: [a (k) as(k) + be(k) bs (k)] , N even

k=l

T =(2-32)

NN odd
F-1

Z [~a¢(k) as(k) + be(k) bs(k) ] , N odd
Fk=l 5
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The common multiplier of two has been dropped since it applied to all

terms other than aCO) and a(!!). The two versions, complex coefficients

and sine-cosine coefficients, of a discrete time matched filter are

shown in Figure 2-5.

The output of the matched filter is the input to the threshold

detector. The threshold is selected for a given probability of false

alarm. If the output exceeds the threshold, hypothesis H is selected

and the signal is considered to be present.



25

0 XT THRESHOLD

N-POINT; (1) 7DETECTOR

(a)IN COPE COFICET

(D1 a(1W T

0 1 S

N-ON C (1) 4XC-(NLD

N-POINT b (1 b (1) DTCO
DFT _____

a (2) a 8(2)
0 W -0

80 (N/2-1) a (;2 -1)
_ _ _ _ I

b (N/2-1) Ib (N/2-1)
0 I SI

(b) S INE AND COSINE COEFFICIENTS

FIGURE 2-5. Discrete Time matched Filter Detector.
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CHAPTER III

THEORETICAL DEVELOPMENT

In order to establish the receiver performance, it is necessary to

know the statistics at the threshold detector. In this chapter, the

statistical properties of the random processes are traced through the

signal processing system shown in Figure 2-1. The statisticai properties

of the observable sequences are defined from the signal and noise model.

The mean and variance of the average phase estimate is cal.!ulated in

terms of the signal--to-noise ratio, signal phase, and of the complex

correlation coefficient of the noise present in the observable sequences.

The statistics of the Fourier coefficient are determined for a non-stationary

average phase estimate. From the statistics of the Fourier coefficient, the

statistics at the threshold detector are defined and the probability of

false alarm and probability of detection determined.

3.1 Input Signal and Noise Characteristics

The statistical properties of the observable complex sequence

rpl(n) and rp2 (n) given in equations (2-16) can be defined in terms cf the

signal and noise model described in Chapter II.

The signal is a wide-sense stationary, narrowband, zero-mean,

2Gaussian stochastic process having a power of a s. The mean and variance
S

of the in-phase and quadrature components of the signal are:

E{s c(t)} = E{s S(t)} - 0 (3-1)

2

E{s 2(t)} = E{s 2 (t)} = (3-2)C S S
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E{s (t) s (t)} = 0 (3-3)c s

The received noise is correlated, wide-sense stationary, zero-mean,
2

narrowband Gaussian noise with power aN2 The mean and covariance of the

in-phase and quadrature components of the noise are given by equations

(2-10) through (2-14).

The observable complex sequences can be defined in terms of the

in-phase and quadrature components.

rp1 (n) rlc(n) + j rls(n)

(3-4)

rp2(n) - r2c(n) + j r2s(n)

From Equation (2-15):

rlc(n) s c (n) + N1C(n)

rls S  (n) + Nls (n)
(3-5)

r2c(n) = sC(n) cos s(n) + s (n) sin s(n) + n2c(n)

r2s(n) = sc(n) sin s(n) + Ss(n) cos ps(n) + N2s(n)

The in-phase and quadrature components of the observable sequences

form a vector,

r= [rlc(n),rls(n) ,r2c(n) ,r2s(n) ] (3-6)

with a four-dimensional Gaussian probability density function

P(rlc, rls,r 2cr2s). The covariance matrix of the four-dimensional proba-

bility density function can be shown to be:
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1 + h 0 PN+h cos -N-h sinp
N s N S

R0 1 + h ++h sin s PN+h cos (sr N(37)

pN+h cos Os XN+h sin

-XN-h sin s pN+h cos 0 1 + h
LN s

2s
where h = -2 , signal-to-noise ratio. (3-8)

The covariance matrix is positive definite. The four-dimensional Gaussian

probability density function is:

1 1,'-i.(9
p(r) ex (-Zr Rr  r) (3-9)

(2 ) IRI

where

IRr -- determinant of matrix Rr
-1

R -- inverse of matrix Rr r

The correlation coefficient of the sequence is

eJ Oo A E{rl(n)r 2 (n)}
e [E{rl(n)rI*(n)} E fr2 (n)r2 (n)}] (3-13)

Substituting the appropriate terms from the covariance matrix, the

correlation coefficient becomes
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K ej 'O (h cos4s + Q + j (H sin s + AN) (3-11)0 1o l+h

The magnitude and phase of the correlation coefficient are:

2 2 2
S +P +X + 2ph cos 0+2Xhsin(

K2 N N -N 2 s N s (-2K 2(3-12)
(1 + h) 2

00 tan- I1 h sin Os + XN) 3-3
_________(3-13)

h cosp s + PNI ;

3.2 Statistical Properties of the Average Phase Estimate

The processes for obtaining the average phase estimates have been

described in Chapter II. The average phase statistics will be shown to

be a function of the complex correlation coefficient between the two

observable sequences rpl (n) and rp2(n).

The phase difference between rp(n) and r 2 (n) has a probability

density function given by [15]

pM = I-K ( + sin-  (3-14)

27T 2 2 )L + 3/2 2

where

-1 < 7r
$ = K cos (<-o),-< sin- 8< (3-15)

0 o 2-

The mean and variance of the single point phase estimate are T16]

cos (K cost ) K sin t (3-16)

2 20
41-Ko2Cos

0
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2 22- 2 (1-K(-2 T E(K) + cos (KoCOS o ) 20 (3-17)
12 0 o 0 (1-K 2Cos2)

where

K 2n

E(K)= 2 E o2 (3-18)
0 (2n)

n1l

The mean and standard deviation of the single phase estimate are plotted

as a function of K and o in Figure 3-1.

3.2.1 Angle Average Phase Estimate

The angle average phase estimate was defined by Equation (2-25).

f 2(n) are constant over the averaging interval, the meanIf ()and a()aecntn vrteaeaigitratema

and variance of the angle average phase estimate are (17]

aa On) (3-19)

Ca2 a N (3-20)
aa N

a

These values are also in Figure 3-1. The mean of the angle average phase

estimate is independent of the number of points averaged. Thus Figure 3.1(a)

also represents the mean of angle average phase estimate plotted as a

function of K and 00. Figure 3.1(b) can be considered as a normalized

plot of the standard deviation of the angle average phase estimate by

labelling the absissa N a /7.a aa

It is assumed that the number of points averaged is large enough

so that the central limit theorem may be invoked. This means that the

angle average phase estimate can be assumed to have a Gaussian distribution.



31

d La

CA

0--

C2 kn

ai~ * cij 17 ca U

U~ ~ ~ c a) 0SS i

i d/c vd) NQIlNIA3a auvQNvIS

* c

0
-5 '-a

0-

d'-
U 'C 4- <a

'~~>

N 2u
CA~ clc

C LJ

dC

a t *a a , *0 a *

01r i0 /c avu Nyo L

td/CQVDNV4j



32

3.2.2 Vector Average Phase Estimate

The vector average phase estimate was described in Chapter II

and defined by equation (2-26). Since an expression for the probability

density function of the vector average phase estimate is not known, it is

necessary to derive such an expression. The mean, variance and correlation

coefricient are derived for the real and imaginary components of the complex

signal obtained when multiplying complex sequence r j n) by the complex

conjugate of the complex sequence rP2 (n). The real component is considered

to be the X vector and the imaginary component is the Y vector. The

X and Y vector components are then averaged. It is assumed that the number

of points averaged is sufficient to invoke the central limit theorem and

consider the average X and average Y vectors to be Gaussian distributed.

These variables are shown in Figure 2-4.

An expression is then derived for the probability density function of

the vector average phasu ssuming the average X and average Y vectors

are correlated Gaussian parameters with unequal means and variances.

Since the expression for the probability density function is not easily

integrable, curves of the mean and standard deviation of the vector

average phases are generated using numerical techniques.

Expressions for the mean, variance and covariance of the real and

imaginary components of the product of a complex variable and the complex

conjugate of another complex variable are derived in Appendix A. These

expressions are given in terms of the components of the covariance matrix.

Substituting the covariance matrix terms from equation (3-7), the equations

for the moments of the X and Y vectors become
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=2 N KC (1+h) cos 0 (3-21)

Y = 2 a K (1+h) sin (3-22)

2 4 2 2
a 2 a N (1+h) (1 + K cos 2to ) (3-23)

2 4 22

Sy2 2 a N (1+h) (1 - K cos 2o ) (3-24)

Iy =2 aN4 (1+h) 2 Ko2 sin 2 0  (3-25)

The average X and average Y vectors are calculated from

N-1
a

x - E X(n) (3-26)
a N

a
n=o

N -1
a

Y E Y(n) (3-27)
a

n=o

The moments of X and Y area a

x= X (3-28)

a= Y (3-29)

2
2 x

xa N
a

2
2 CF y (3-31)

ya Na

AI
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a xv (3-32)
a

Knowing the moments of the real and imaginary vector components,

the vector average phase probability density function can now be derived.

Assume the X aand Y avectors are jointly Gaussian distributed, the joint

probability density function is given by:

P IY exp- 1 X-X2

2-rxa a ( y (1-p 2(l- xY 2) cxa 2

-2p a a a a_ + a)a (3-33)
xy a xa ya ya

Tae X and Y vectors are related to the phase angle, a and amplitude,a aa

r by:a

r= 2 + y) (3-34)
a a

Y
va = tan -a (3-35)

a

The probability density function of the phase angle, eva can be

determined by finding the joint probability density function of r and

va and then integrating with respect to r. The joint probability density

function of ra and 0v can be found from p (X,y)
a va XY

p(r,4 ) = - px(r cos vr sin e ) (3-36)
va xy va va

where
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a a

J = (3-37)

Ova va

a a

Substituting Equation (7-34) and (3-35) in (3-37), the Jacobian becomes:

J + (3-38)
/x2 + y 2 r

a a

The joint probability density function of r and eva then becomes:
p~r, va =  r va

p(r, 2 ) =( 2) exp -a(r, va)] (3-39)

xa ya xy

where

(r Cos~va-Ra) 2  (r cos va-Xa)(r sinOva a +j('va (r O 2 -X)xy a a"

xa ya
xa

(snOva,- a) 2(3-40)

2

ya

The probability density function p( va) can be found from

va

P va) 2 r exp a(r,$va) dr (3-41)
xa ya XY

Performing the indicated integration and substituting the moments of

X and Y , the vector average phase probability density function becomesXaa

ItI
t V.
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(1-Ko 4 )  ( N K 2  )o

2 2 2 K

aK(I-Ko2) coS(Iva-o) [N Ko sin2(Iva-o)a o

2v'" [1-K02 coS( va-Po)]3/2  L 1-Ko2 cos 2 (va-c o

VRaKo (1a 2aOOv-O

X 1 + e r f l 2 ) 1K 0
2  ) (3-42)

(1+Ko 2 ol- cos 2(v- o

where

N = number of points averageda

K = magnitude of correlation coefficient of the receiver observable

sequences rp1 (n) and rp2(n) after complex sampling

o phase of correlation coefficient

and
x

e r f ( 2 exp (-Z2) dZ

0

Probability density functions for the vector average phase are shown

in Figure 3-2(a), for various values of K when the number of points

averaged is held constant, and in Figure 3-2(b), for various values of Na

when K is constant. In both figures p( va) is plotted as a function of

(Ova -o )where co is the phase angle of the correlation coefficient defined

by Equation (3-20). Since the expression for the probability density

function is not readily integrable, computer programs were developed to give

curves of the mean and variance of the vectot average phase estimate as a

function of P for a given K and N . Curves of the mean and standard
0 o a

deviation of the vector average phase are shown in Figures (3-3) to (3-6).

I
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The curves presented are for K = 0.025, 0.10, 0.25 and 0.50 and N = 64,0

128, and 512. Values of the mean and standard deviation for other values

of K and N can be obtained by interpolatirg from the curves

presented.

3.3 Statistics of the Fourier Coefficient for Non-Stationary

Periodic Input

The matched filter detector was described in Chapter II and shown

in Figure 2-5. The first function performed by the matched filter detector

is a Discrete Fourier Transform of the average phase estimate 0a (m). The

mean and standard deviation of the average phase estimate are known. The

standard deviation is a function of the signal phase which changes with

time. Therefore, the input to the DFT must be considered to be a non-

stationary process.

The real, discrete time sequence a(m) is a non-stationary random

-- 2
process with mean, 0 (m), and variance, a (m). The mean and variance are

a

known for values of m between zero and (NF-1). Over this period, the mean

and variance of a(m) can be expanded by a Discrete Fourier Transform,

NF-1

= ( i) N E C m(k)e 3-T'-, 0< m <NF-1 (3-43)

k=O

or

' NF- I

a~m) Mcos-a(n)= NF E am N F

k=0

I NF - I

bm in27km N -1NF b m (k) sin F (344)

k-0
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where
N F-1

2Trkm

aCe ( k ) 
= 7 e- L< csN 0k< NF- (3451

in a F F

m-0

N F-1

27rn 0<k<N14
bm a(m) N F _

m0

N F-1

b (k)= si 7T O<k<N -1
in E a N -- F_

and

N F-1

2Trkm2 ,7k (3-46)
2 (M) C (k)e 3 NF , 0<m< NF-I

k=O

or

N F-1

2 (m) (k) 2Tkm
aF V F

K=O

N F-1

+ by(k) sin 2rk m O<m< N -1 (3-47)

F F F

k=O
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where

N F-I1

C(k) 2 (m) e-i 27km
v a ( ) N , 0<k _< N F-1

m=O

N F-1

2 27km
av (k) = ( am) cos N , O<k< NF-1 (3-48)

mO

N F-1

b (k) = 2 (m) sin 2 ,km O<k< NF-I

v ~ a - F

m=O

Sequential samples of the random sequence are assumed to be independent.

The discrete time sequence, (m), can also be expanded by a Discrete

Fourier Transform over the period N F . It is necessary to know the moments

of the resulting Fourier coefficient; c (k), a (k), and b (k); to establish

the statistical performance of the matched filter detector. These Fourier

coefficients are:

NF-1

2 2Tkm
c (k) - a(m) e- 3 NF  O<k< NF-I

m--O

N F- 1

a (k) = E a(m) Cos NFrk , k N__3-9a N 
(

MN0

NF-I

*2km

bc(k) - Z a si NF , O<k< NF-1

m-0

N -

a F
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3.3.1 Mean Value of the Fourier Coefficient

The mean value of a linear summation of random variables is equal

to the linear summation of the mean values of the random variables. There-

fore, the mean values of the Fourier Coefficients in equation (3-49) are

equal to the right-hand side of equation (3-45). Thus

C (k) C C (k)

a(k M am(k) (3-50)

b (k) =b M(k)

The mean of the Fourier coefficients for the DFT representation of t (-n)

is equal to the respective Fourier coefficients of the DFT expansion of the

mean a (in) of the random sequence.

3.3.2 Variance of the Fourier Coefficients

The variance of a linear summation of uncorrelated random variables

is equal to the summation of the squares of the linear coefficients times

the variance of each random variable. Therefore, variance of the Fourier

coefficients is given by:
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N F-1NF-

Ge 2 (k) = Z apa2(m)

m-0

N F-1

Oa2 (k) 2 ( (Ca2 os 27T m ) 2(3-51)

m=O

N F-1

a2 (k) = 
2 (m) (si 2Trkm )2

NF-F

m=0

The right-hand side of the equation for the exponential coefficient is

the DC term of the discrete Fourier Transform expansion of the variance

of the random sequence t (m) [see Equation (3-48) with k set equal toa

zero]. Therefore,

2
a (k) Cv (0) (3-52)cv

Replacing the squared terms in Equations (3-51) with their

respective trigonmetric identity, the variance of the sine and cosine

coefficients become:

F N-I

u2 (k) =2 (M) a +' 2 M 4iTkm
a 2 x 2 Nm) cos N

m=O m0

(3-53)

b 2 (k) - E a 2 m) Z (m) cos NF

mO m--0
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The first term in the above equation is one half the DC term in the DFT

expansion of the variance of the random sequence a (m). Comparing the

second term with Equation (3-48", it is easily shown that

a v(o) = Cv (o) ,k=

a (2k) , 1<<N F

N - 1 234F 2() 4k (3-34)

xo cos F= av () = Cv (o) , k=NF

2
m 0

a (2k-NF) , NF<k<N_ -
2 r

Therefore, the expression for the variance becomes:

NF
c (o) , k=F, 2

2 1NF
Ca (k)= - [c(o) + av(2k) , l<k< 2 (3-55)

N 
FS[c (o)-a (2k-n)], F<k< 1

2 _ v 2 -k<Fl

vN F

2 c(o)-a(k] 1.k

ab (k)= - 2 (3-56)

1 [C (o)-a (2k-n)] -<k<N-i
2 v v 2-
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3.3.3 Correlation of the Sine and Cosine Coefficients

The covariance between the sine and cosine coefficients is given

by
N F-1 N F-1

2 rkn 2 rk__m

Ub(k)= L E {t (n) (m)} cos - sin NF

aba a Os FF
n=0 m=O

- a(k) b(k)

Sequential samples of the random sequence are independent; therefore the

covariance is:

F-

1 2 4rkm
ab (k)= 7 - a (m) sinNF (3-57)

m=0

Comparing the right-hand term of Equation (3-56) with Equation (3-48), the

expression for the covariance becomes

NF
0 , k=O, -2

1 NF

a(k) b(2k) , l_<k<- (3-58)

1 bv(2k-n), Fk<NF-i

3.3.4 Correlation Between Fourier Coefficients of Different Harmonics

The covariance terms beLween Fourier Coefficients of different

harmonics are:
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pi (k,1) =E {c(k)c (1)} -c(k) cZ

1(k,i) = E fa(k)a(i)} -(k) (,')

1.L.(k,l) = E {b(k)b(i)} - k) bZ

vi a (k,1)= E {a(k)b(i)} -(k) bZ

Substituting

N F-1

(kZ) 2 ()e 27T (k- )m
vi (ki)= a ( e N F

M- 0

N F-1 N F-1

2 0T m=0 +C 2 -

v(k, Z) -Lj 2(M) Co (M)k-.) Cos . -

NN N-1NF

2NF 2 aNF

F F

vb(k,Z)=-~ ~ 2 (n sin (i~+~ an) sin Tk-~
F NF

M--0 M- 0
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Comparing the above equations with Equations (3-48), the covariance

expressions become

c (k,Z) = cv(k-Z)

1a(k,Z) = j av(k-X) + -1 av(k+Z)

(3-59)
1 i

Ib(k,Z) = ! av(k-Z) - av(k+Z)

(kZ) b (k+Z) - (k-Z)
ab 2 vi b2 v~bkZ

3.3.5 Distribution of the Fourier Coefficients

The sine and cosine Fourier coefficients are formed by a linear

transformation of random variables. Therefore, the Fourier coefficients

are also random variables and they have a Gaussian limiting distribution.

For the cases under consideration it will be assumed that N F is large

enough that the central limit theorem applies and the distribution of

the sine and cosine Fourier Coefficients can be considered to be Gaussian

with mean and variance as previously derived.

The moments of the Fourier coefficients for the real discrete,

random sequence a(m) are summarized in Table 3-1. If the Fourier

Coefficients of the DFT expansion of the variance of sequence a(m) has

a DC term which is large with respect to any of the higher order coeffi-

cients, the input sequence can be considered to be stationary. For a

stationary sequence, the mcnents given in Table 3-1 can be simplified as
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TABLE 3-1

MOMENTS FOR FOURIER COEFFICIENTS OF NON-STATIONARY SEQUENCE

k - 0 1 < k < (- 1) k - -- 1) < k < (N-1)

C(k) I C(0) C,(k) C(-) C(k)

0 
2

(k) Cv(0) C (0) cv(0) cv(0)

ucc, (- Z) Cv(k-Z) C v(, Z) Cv (k-.)

a(k) am(O )  a(k) a 2  am(k)

2 Cv(0) + av(
2
k) ( Cv(0) + av(2k-!;)C(0) 2 C(0) 2

b(k) j 0 bm(k) 0 b(k)

2 cv(0) - a,(2k) Cv(O) - a,(2k-')
o (k) 2 02

by(2k) by(2k-)

ak [Cv 2(0)- a v2(2k)]1/2 [cv2(0) - av2 (2k-_,) ]i/

av(k-t) + av(k+) av(k-b) + av(k+Z)

a av 2 av( 2  
)  2

av(k-) - av(k+£) av(k-I) - av(k+Z)
Ub(k.£) 0 0

2 2

Ua (kZ) b(I ) bv(k+Z) - bb(k-(), 
b  bv(kx) - k-

C b
(k) 0 ,(m) e C (k) F

M-0 c-

F F
N F_ kI NF_ 1

am(k) ' 7. ca(a- cg k a (k) 2 a (n) cos
NF v F

NF-i N-i

NF1 N F-1
b,(k) -7- 2in 2km Fb ()( a n NF  

bv(k) " - (n) sin

-0 -
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given in Table 3-2.

3.4 Statistics of Threshold Detector Input

The output of the matched filter is given by the equation (2-31).

This parameter is the input to the threshold detector which determines

if the desired signal is present. The mean value of the threshold detector

input is

K

T  [as(k) a(k) + bs(k) b(k)] (3-60)

k=l

where:

S1 Neven

K=
N-1 , N odd

The variance can be found from

-~ -2----
-

2 
= AT2 _ AT

Expanding, the variance of AT becomes

K

a = [as 2 ( k ) a 2 (k) + b 2 (k) ab 2(k) + 2as(k) b (k) ab(k)]

s a s s s ab

k=l

K K
+ as(k) as( ) a(kk) + bs(k) bs() b(k,)

k-l Z-1

+ 2 as(k)bs (Z) ab(k,Z)] (3-61)

r !b1
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TABLE 3-2

APPROXIMATE VALUE FOR MOMENTS OF FOURIER COEFFICIENTS
ASSUMING STATIONARY INPUT SEQUENCE

k = 0 1 < k < ( ) k - -+ I) < k (;-1)

c(k) C(k) C (k) C (k) C ()

a c2(k) Cv(O) Cv(O) Cv(O) C,(O)

oc(k,
"
) 0 0 0 0

a(k) am(k) am(k) a.(k) am(k)

a 
2
(k) C (( ) C v( )

Pa(k,) 0 0 0 0

b(k) 0 bm(k) 0 bm (k)

2 b(k) 0 o'0 c 0
b2 2

Pb(kZ) 0 0 0 o

Pab (k.Z) 0 0 0 0

N¥-1 27rkm NF-i

C(k b M ((m) e E (k) sin 2sk.-

M-0 M-0

N-i N -1

am(k) - ) Co 2km Cv (0) . o a 2C)
a0I F-
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where the values of the variance and covariance terms can be found in

Tables 3-1 or 3-2. Since the Fourier coefficients are assumed to be

Gaussian, the input to the threshold detector is also Gaussian.

1 r (XT -X T)2
T P 2_7 X 20A2

The probability that AT will exceed the threshold is

P(XT> Th) = - e r f TH-T (3-63)

The likelihood functions can be obtained from the probability desnity

function of A
T

Po(T) = P(TAT < AT + d'r IHo) (3-64)

pl(AT) POT < T < AT + dAT jH) (3-65)

3.5 Receiver Operating Characteristics

The receiver operating characteristics, ROC, curves relate the

probability of detection versus the probability of false alarm for a given

signal-to-noise ratio. These curves can be determined from the properties

of the desired signal, the signal phase, the properties of the correlated

noise and the signal-to-noise ratio. The likelihood ratios can be found

in the following manner:

1. Determine the input noise correlation coefficients pN and XN;

the signal-to-noise ratio h and the phase s (t), of the

desired signal.

t[
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2. Calculate the observable signal correlation coefficient

magnitude K and phase using Equations (3-12) and (3-13).
0 0

Values of K 0and 0 should be calculated over the total processing

interval (or sequence period).

3. Determine the mean and variance of the average phase over the

total processing interval. NOTE: it is assumed the averaging

time is short enough that the signal phase can be considered

constant during the averaging interval.

4. Calculate the Fourier coefficients for the mean and variance of

the average phase.

5. Calculate the statistical moments of the DFT coefficients using

Table (3-1) [Table (3-2) if the average phase variance is inde-

pendent of time].

6. Determine the mean and variance of the threshold detector input

using Equations (3-60) and (3-61).

7. The likelihood function is calculated using Equation (3-62).

For the H 0hypothesis, the mean and variance of the average phase

will be constant over the processing period. The input to the matched

filter is stationary and the values for the moments of DFT coefficients

are:

c(k) =0 k k#0 (3-66)

2 M 2 () NF a a (3-67)
a a (~ b~ 2
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where

a - variance of average phase estimate given H.

NF  - number of points in DFT.

The mean and variance of the threshold detector input are:

xTo 0 (3-68)

K

ao2 NF a2 [ 2(k) + b 2(k)] (3-69)
X 2 (s

k=l

and the likelihood ratio is:

P (XT) = 1 exp 2To2  (3-70)

v ' TT a N

The probability of false alarm is:

1fa [1 - e r f (3-71)

The likelihood ratio for the HI1 hypothesis can be found using

the steps given. The probability of detection can then be determined

from the p,(XT) likelihood function.

AT
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CHAPTER IV

DETECTION OF KNOWN SIGNALS

The preceding chapters described a receiver to detect a dual

channel differential phase modulated signal and developed the theoretical

results necessary to determine the receiver operating characteristic

curves. In this chapter we will apply those results to the detection of

"known signals." "Known signals" is used to mean signals as described in

Chapter II with a known signal phase delay function. One example will

be examined. The example is a linear delay which is often encountered in

a practical application. Radiation from a source moving with a constant

velocity will result in an approximate linear phase delay between the

output of two spatially separated sensors. The matched filter configura-

tion is determined, the mean and variance of the average phase estimate

calculated in both the time domain and the frequency donian, and the ROC

curves developed. The average phase estimate is calculated for both

the angle average and vector average cases so that the effect of the

averaging method on the receiver operating characteristics can be examined.

Detection of these known signals is evaluated under varying noise

correlation conditions. The magnitude, K., and phase, N'of the

noise correlation coefficients considered are:
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K 0.5, t

2

K N 0.7, N T
4

KN 0.2 , N

Two cases are investigated using the preceding correlated noise conditions.

For the first case, the noise correlation is known a priori allowing the

detection threshold to be fixed for a desired false alarm rate. In the

second case, the noise correlation is unknown a priori and the threshold

is set based on an assumed correlation condition. The analytical ROC

curves are generated for two threshold settings.

The examples considered have 6400 points in the processing interval

and each interval represents one period of the time delay function. The

6400 points are processed by averaging 100 points and performing a 64-point

DFT. No attempt is made to investigate an optimum trade-off between the

number of points averaged and number of points in the DFT.

4.1 Linear Delay With Known Noise Correlation

The linear (or ramp) phase delay function is:

~~~~~~ ( = (-+t) 0< t < T
s P T- -



The phase delay of the sampled signal becomes: 
5

p(n) -i+LN) O<n <N-1 (4-1)

For the example being investigated was chosen to be rr/2 radians
p

(90 D).

The Fourier transform of the linear delay is:

a (k) = 0 (4-2)
5

bk)1< k <N- 1 (4-3)
5 Trk ' F

The configuration used in implementing the filter is an approximation

of the ideal matched filter in that only the first three harmonics are

used as shown in Figure 4-1. The configuration was chosen to simplify

implementation and because after the averaging process the higher harmonics

fall off faster than the inverse of k.

The likelihood functions are again found using the procedure from

Chapter III. The steps will not be presented in detail. Any approxima-

tions will be discussed and the results presented.

Figures 4-2 through 4-4 show the correlation coefficient between

the observable signals, the angle average mean and variance and the vector

average mean and variance, respectively. These variables are all shown for

a signal-to-noise ratio of -12 dB.

The mean and variance of the input to the threshold detector are

based on the first three harmonics. The mean of T is:
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S[-bm() b 'b(2) -'bm(3)] (4-4)

T 64 2 3m

and the variance can be calculated assuming the average phase estimate

is stationary with a variance equal to the average of the variance of

the individual estimates over a processing interval.

G 2 1 49 C(0) (4-5)
2(64)2 3

Equation (4-5) was used in calculating the ROC curves. In Figures

4-5 and 4-6, the ROC curves for a probability of false alarm of 10
- 3

and all noise correlation conditions are combined for angle average and

vector average phase estimates, respectively. A comparison of the

receiver performance as a function of noise correlation can be made. The

variation in signal-to-noise ratio for a given pD is less than 1.2 dB

for the angle average case. The vector average method results in receiver

performance which is more sensitive to noise correlation.

The ROC curves for the angle average phase estimate case can be

further understood with the aid of Figure 4-3. The waveform shape of

the mean of the average phase estimate remains highly linear over all the

noise correlation conditions. The variance varies over a 3:1 range as

the noise correlation changes but, in general, the peak-to-peak value of

the mean increases as the variance increases. Thus, the detection per-

formance when using angle average phase estimate is relatively insensitive

to the noise cor>elation.

The detection performance when using the vector average phase

estimate can be explained with the help of Figure 4-4. Consider first,
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the case of correlated noise, IC=0.2 N = ' The variance of the

phase estimate is 2.86 when no signal is present. The standard deviation

of the test statistic under the H 0hypothesis is 0.295. At the high

signal-to-noise ratio, the maximum peak value of the mean phase estimate is

7r/2. Thus, the maximum mean value of the test statistic is 0.458. In

-3order to obtain a probability of false alarm of 10 , the threshold

must be set 3.09 times the standard deviation or greater than maximum

mean value of the test statistic. As the signal-to-noise ratio increases

the variance and mean decreases and the probability of the test statistic

exceeding the threshold decreases at signal-to-noise ratios greater than

-6 dB. For probability of false alarm greater than 6 X 10 2, the maximum

mean value of the test statistic will exceed the threshold. This behavior

could be avoided by increasing the number of points in the matched filter

DFT.

Examination of mean phase estimate in Figure 4-4 shows the waveform

is badly distorted for noise correlation of K,= 0.5, T r/2. With
I N

noise correlation phase of 7T/2 and signal-to-noise ratio less than the

noise correlation magnitude, the mean vector average phase estimate

waveform is no longer matched to the filter in the detector. As the

signal-to-noise increases the mean vector average phase estimate waveform

aF'tn becomes approximately linear. This noise ratio decreases in Figure

4-b when the noise correlation phase is ir/2.
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4.2 Unknown Noise Correlation, Fixed Threshold Detector

Previously, it was assumed that the magnitude and phase of the

noise correlation coefficient were known and the detector threshold could

be set for a given probability of false alarm. It is also of interest to

examine the case of a fixed threshold when the noise correlation is un-

known.

Figures 4-7 and 4-8 are the receiver operating characteristics when

the angle average method is used to estimate the average phase. The thres-

hold was set to give a probability of false alarm of 10 ; in Figure 4-7

the threshold was set based on uncorrelated noise and in Figure 4-8 a

noise correlation coefficient of KN= 0.5, N = 0 was assumed. These

curves can be compared directly with Figure 4-5 where the noise correlation

was assumed known.

For the values of actual noise correlation considered in Figure 4-7,

the worse case probability of false alarm would increase to 2.4 x 10- at

a noise correlation of KN = 0.2, N= nT. For an actual noise correlation

of K N = 0.5 N = 0 or KN = 0.7, N = T/4 the receiver sensitivity suffers

a 1.1 dB loss. In Figure 4-8, the receiver sensitivity suffers no loss,

but the probabili~y of false alarm increases to 1.9 x 10- if the actual

noie crreatin wre .~ 0., N =Ithe probability of false alarm

-3
would not exceed 10 for any of the actual cases considered and the loss

of receiver sensitivity would be 1.8 dB. Thus, the performance of the

receiver is relatively insensitive to noise correlation coefficient when

using an angle average phase estimate and for the values of correlation

considered.
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The receiver operating characteristics when the vector average

phase estimate is used are shown in Figures 4-9 and 4-10 for the same

cases as considered previously. In Figures 4-9 and 4-10 the threshold

was set assuming noise correlation of K = 0.0 and KN = 0 N = 0'

respectively. These receiver operating characteristics are sensitive to

actual noise correlation coefficient. In Figure 4-9, the probability of

false alarm increases to 2.5 x 10- 3 for an actual noise correlation of

KN = 0.2, cN = 7r. For other noise correlation conditions, the receiver

sensitivity decreases such that for a signal-to-noise ratio of -4 dB the

probability of detection is less than 10- 4 . The curves in Figure 4-10

show a worse case decrease in expected receiver sensitivity of 6.8 dB

while the probability of false alarm increases to 0.45 when the noise

correlation is KN = 0.2, N = n " It would be undesirable to use the

vector average phase estimate if the noise correlation coefficient were

not exactly known.

4.3 Comparison with Cross Correlation Detector

The cross correlation receiver is commonly used to detect Gaussian

signals in Gaussian noise. To detect a dual channel, differential phase

modulated signal in correlated noise, the cross correlator receiver in-

cludes a noise decorrelator or spatial pre-whitener and phase compensation.

The detection performance of this cross correlation receiver is compared

with the phase matched filter receiver for detection sensitivity and the

sensitivity of the receivers to the noise correlation coefficient.

The cross correlation detector with spatial prewhitening and signal

phase compensation is described in Appendix B. The necessary equations
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to calculate the receiver operating characteristic curves are also

contained in Appendix B. The ROC curves for the linear time delay and

-3
a probability of false alarm of 10 were generated for two cases:

1) the noise correlation known, and 2) noise correlation unknown but

threshold, prewhitening and phase compensation set assuming a noise corre-

lation value. These ROC curves are compared with corresponding curves

for the signal phase matched filter detector using either angle average

or vector average phase estimation.

4.3.1 Known Noise Correlation

The ROC curves for a cross correlation detector using spatial

prewhitening and signal phase compensation are shown in Figure 4-11. These

curves represent the case when the threshold was set to give a probability

of false alarm of 10- 3 and thus correspond to the ROC curves in Figures

4-5 and 4-6 for the receiver using a signal phase matched filter. For

the values of noise correlation considered, e cross correlation receiver

using spatial prewhitening is 3.3 to 4.7 dE more sensitive than a receiver

using angle average phase estimate and a phase matched filter detector.

The cross correlation receiver is 0.7 to 8.8 dB more sensitive than a

receiver using vector average phase estimate and a phase matched filter

detector.

4.3.2 Unknown Noise Correlation

Two cases were examined for the cross correlation receiver with

the spatial prewhitening, signal phase compensation and threshold set

assuming a given noise correlation and the actual noise correlation
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being a different value. The ROC curves in Figures 4-12 and 4-13 are for

assumed noise correlation of KN = 0.0 and KN = 0.5, ON = 0, respectively.

If the assumed noise is uncorrelated and the actual noise correlation is

KN =0.5, N = 0; KN = 0.5, *N = 7112 or KN - 0.7, 7N = r14, the probability

of detection will be greater than 0.9999. However, the probability of

false alarm will also be greater than 0.9999. The same applies if the

assumed noise correlation is KN = 0.5, ON - 0 and the actual noise

correlation is KN - 0.2, N = IT. To reduce the probability of false alarm,

it would be necessary to increase threshold and suffer the corresponding

loss in sensitivity.

The ROC curves in Figures 4-12 and 4-13 can be compared directly

with Figures 4-7 through 4-10 for the receivers using signal phase matched

filter detector. The receiver which is least sensitive to the actual

noise correlation is the receiver using angle average phase estimation

and a signal phase matched filter.

, I "; -.- Z .i , . . .. . _
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CHAPTER V

SUMMARY ANID CONCLUSIONS

5.1 Sumr

This research studied the signal detection characteristics of a

receiver with two input channels. The signals received in both channels

are random, narrowband processes which are identical except for a known,

variable channel-to-channel time delay. The known time delay is represented

by a carrier frequency phase shift when expressing the narrowband random

signals. The noise is also a narrowband, random process. There can be

correlation between the noise in each of the input channels. i

Chapter II explained the generalized received signal and noise

model and described the receiver being studied. The receiver estimates

the average phase difference between the observable signals in each of

the input channels. Methods of forming the average phase estimate consid-

ered are angle averaging and vector averaging. The average phase signal is

passed through a filter whose transfer function is matched to the known

time varying, signal phase. The filter is implemented using a discrete

Fourier transform. The output of the filter is threshold detected to

determine the presence of a signal with the known phase shift.

The theoretical statistics required to determine the detection per-

formance of the receiver were developed in Chapter Ill. The statistics

are functions of the input signal-to-noise ratio, the correlation of the

noise in the two receiver input channels, the period of the phase averages

and the number of points used in the discrete Fourier transform. The

moments of the vector average phase estimate were derived. The variance of
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the average phase signal varies with time; therefore, the moments of the

Fourier coefficients were derived assuming a non-stationary periodic in-

put. The receiver likelihood functions were determined so the probability

of false alarm and probability of detection could be calculated.

In Chapter IV, the detection performance was determined for an example

of possible signal phase shift function. The phase shift function consider-

ed was a linear phase shift. The receiver operating characteristic curves

were generated for several noise correlation conditicns assuming the noise

correlation was known a priori. Finally, receiver operating characteris-

tic curves were generated when the detection threshold was set for an

assumed noise correlation but the actual noise correlation was not known

a priori.

A performance comparison of the receiver using an average phase

estimate and phase matched filter detector to a cross correlation detector

was made. The cross correlation detector included a noise decorrelator

and phase shift compensator. Comparisons were made assuming the noise

correlation was known a priori and then assuming the threshold was set

for a given noise correlation but the noise was not known a priori.

5.2 Conclusions

It was stated that the signal processing was intended to detect

at low signal-to-noise ratios and over a variety of noise correlation

values. The receiver proved to be robust under these conditions when the

angle averaging method of estimating the average phase was used. For the

noise correlation conditions investigated, the variation in signal-to-noise

ratio for a given probability of detection was less 1.2 dB. The
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F performance when using the vector average phase estimate was more sensitive

to the value of the noise correlation. When the noise correlation is known

exactly a priori, the choice of phase averaging method depends on the

exact value of the correlation and the desired probability of false alarm.

In the case of a fixed threshold based on an assumed value of noise cor- '

relation where the actual noise correlation is not known a priori, the

performance using the vector average phase estimate is unsatisfactory.

The variance of the test statistics and hence the threshold setting is

sensitive to the actual value of the noise correlation. The angle average

phase estimate is less sensitive to the actual value of the noise

correlation. When the noise correlation is not known a priori and the

angle average phase estimate is used, a threshold setting can be found

which will give variation in signal-to-noise ratio of less than 6 dB for

a given probability of detection and a probability of false alarm below a

desired level. For the noise correlation values studied, the variation

in signal-to-noise ratio for 50% probability of detection was 2 dB.

A comparison of a cross correlation receiver with noise decorrelator

and phase compensator and a receiver using an average phase estimate and

phase matched filter detector was made for the noise correlation known a

priori and for a threshold based on an assumed noise correlation when the

actual correlation was not known a priori. The cross correlation receiver

is approximately 4 dB more sensitive than a receiver using an angle

average phase estimator when the noise correlation is known a priori. The

cross correlation receiver is 1 to 9 dB more sensitive than a receiver

using an vector average phase estimator when the noise correlation is known

a priori. If the noise correlation is not known a priori, the performance
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of the cross correlation detector is unsatisfactory.

The major accomplishment of this research is the development of a

receiver with fixed detection threshold and signal processing which will

detect a differential phase modulated signal in correlated noise when the

value of the noise correlation is unknown. The phase matched filter

receiver with an angle average phase estimator can be used over a wide

range of noise correlation values. Although it is not as sensitive as the

cross correlation receiver under known noise conditions, its sensitivity

does not degrade as much when the noise correlation is not known a priori.

5.3 Future Research

Several areas need further research to fully understand and optimize

a receiver to detect a dual c~hannel, differential phase shifted signal.

Some of these topics are discussed briefly.

The detection of known signals was performed with a given phase

averaging period and a given number of points in the discrete Fourier

transform. No attempt was made to optimize these variables or the trade-

off between them. A trade-'qff study should be performed to determine the

total processing period and the division of the samples within the process-

ing period between the phase averages and discrete Fourier transform.

The detection of known signals assumed a peak phase for the desired

signal. In some systems, the magnitude of the peak phase may be a design

parameter. The curves of the mean average phase have a peak at a value of

signal pia that is a function of the signal-to-noise ratio and noise

correlation coefficient. The presence of this peak implies that there may

be a value peak signal phase that is optimum.

&L -
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APPENDIX A

SELECTED MIXED CENTRAL MOMENTS OF QUADRIVARIATE
GAUSSIAN DENSITY FUNCTION

The mean, variance, and covariance of the real and imaginary

components of a product of two complex variables can be found from the

appropriate mixed central moments of the joint density function of the

components of the two complex variables. The product of a complex variable

multiplied by the complex conjugate of the second complex variable is

given by

uv* = (uc + jus) (vc - jvS)

uv* = (ucv c + usvs) +j(UV - Ucvs). (A-l)

The real and imaginary components are:

x = Re [uv*] = u v + u v (A-2)

y = Im [uv*] = usv - u v (A-3)

The mean, variance, and covariance values can be obtained from the

mixed central moments of the joint probability distribution of the

variables uc, us, vc, and vs

The variables u , u , v , and v are zero mean Gaussian variables,
C 5 c s

described by covariance matrix:

R - [E {Z Z'}] (A-4)

where the vector Z is related to the variables uc, us, Vc, and v byc- s
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z Uc

Z 2 u s (A-5)
z3 V

The ij th term of R is equal to the ji th term so that the covariance

matrix is symmetric. The quadrivariate Gaussian density function is

given by

P(Z (2T) I /2 exp ( ~Z' R71 Z)

and the characteristic function is

1 w' Rw
C (JL) = e 2 _!L (A-7)

or

4 4

C (jl) = expf- 2: E Wkrk W (A-8)

i-1 k=1

where

r j -E ({7.Z1}

a~w1, 29 w 3 p w4]

bi b2 b3 b4.
The mixed moment Efx 1 x 2  x 3  x 4  Iwhere b i are positive integers

can be found from
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b1  b2  b3  b I B

E{z I z b2  Z b3 Z b41 2 3 4B/2 b1 ; b,, b 3 a b4a (B/2)! ;W 1  2 W W 3  W 4

B2

r ' r ] B2

4W 4

i=1 k=1

WkO (A-9)

where

B b1 +b2 +b3 +b4

Of interest in finding the mean, variance, and covariance are terms of

2  2
z is given by
E{z 2z 2} W rr (A-b)3 4 4 2

z 8 2 L i ij ji

The only terms which will not be zero are those terms of the form
2 2

W w 2 ., therefore,

E{z r ii r + 2 r ij (A-l1)
i iijj i

K

,
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Similarly for E{z2 z z k} the only non-zero term are of the form
2

i 2wj k .•. . therefore,

E{wi2 wj wk } - r 4 rjk + 2 rij r k (A-12)

and

Ez1 Z2 Z3 4 r12 r34 + r13 r24 + r14 r23 (A-13)

The terms of interest are:

E{u v }=
E{ucvc r13
E{u cv S } = r 14

E{usv c} = r23

22}
E{u sv = r r24r

EuC 2vC2 r 11 r33 +2r132

E{uc 2 v = r11 r44 + 2 r14
2  (A-14)

E{u 2V } r r +2r 2
s r22 33 23

E{u v = r22 r4 4 + 2 r

E{ucVV} r r3 + 13 14

E{u v } r r + 2r r
5c s 22 34 23 24

E{UUv 2 r r + 2 r r
C5sC 33 12 13 23

E{u usv = r r + 2 r r
Cs s 44 12 14 24

Using equations (A-13) and (A-14), the moments of the real and imaginary

components are:

x r1 3 + r (A-15)24
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y r23 -r 1 4  (A-16)

02 r32 r 22
x r 11r 33 + r22 r44 +  13+ + 2 r14r23 + 2 r12r34 (A-17)

ay " r 44 + r22 r33 + r14 r 23 + 2 r1 3r24 + 2 r1 2r34  (A-18)

i3 ff (r13+ r2 4) (r23- r1 4) + r1 2 (r3 3- r44) + r34 (r2 2- rll) (A-19)

24 2- 14 12 3- 44 34 2- 1
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APPENDIX B

NOISE DECORRELATOR, SIGNAL PHASE COMPENSATION,
CROSS CORRELATION RECEIVER

The cross correlation receiver is shown in Figure B-I. The

observable signals are processed by a noise decorrelator and phase

compensator. The signal processing is then split into two channels.

The first channel estimates the covariance and the second channel

estimates the power level. The weighted differences of the two process-

ing channels is formed.

If the weighted difference is positive, the signal present hypothesis

is selected.

Noise Decorrelator

The transfer function of the noise decorrelator is:

10

H ~ _J^ (B-1)

L __ KN

where K and 0N are the estimated magnitude and phase of the noise

correlator and coefficient. The covariance matrix of the input signals

I,is : ,

1K e0
0

2
R r a 0° -Jo (B-2)

K° e 0 1

L
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The covariance matrix at the output of the decorrelator is:

Rp =D Rr D

J%_ J N
K 0 KNe

1 0 -K2

R 2 2 (B-3)
p

K j e 0  2 2Ko0e e- +KN K N coS(Oo-N)

N~K

For signal-plus-noise with the decorrelator and noise matched, the

covariance matrix at the output of the decorrelator is:

hK e
I+h m

-_2

2
R = N  (B-4)
Pts+N

h K ...m h K 2

m 1

where

K m -[(cos 'n CosN) + (sin s i

_ 4 ( 1~ - 2 KN COS (0 - 4;N) 112  (B-5)

i n -KN sn B-
- tan - - (B6)

Cos s K Cos

- ' .. .. .. .. .. . .. I f l , 
=

,'7 " '° " i .. .. i 
"

' ..." .. .... .. . ..... , . ..
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Phase Compensation

The phase compensation operates on the observable signal to cause

the covariance terms to be real. This is accomplished with the transfer

function:

[1 01
HemJ * (B-7)

0 e

The general covariance matrix at the output of the phase compensator is:

R =11 R Hu m p m

J O_ e m
(Ko0e e e

R ffio (B-8)m1+

(K e -K e -  ) e - 2K °  N cos (0o-

-2  -N2

For the signal-plus-noise case, R becomes:u

hK
l+h m

22

R s+ N (B-9)

hK hK 2

m + m

2 -i..,
/ 1-0
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The signal phase is a time varying function. The time delay compensation

then must also be a function of time. If Ru is put in terms of the real

and imaginary components of u the isomorphic counterpart for the general

covariance matrix becomes:

1 0 Pu -Xu

0 1 X Pu

R 22 (B-10)u 0 2
Ou )u au

p u 0 a 2
L - u U

where

I + - 2 Ko cos( -0I
a = (B-Il)

U u Re L Ke 
0 KN (B-12)

[ ( e e JN e- O
X Im (B-13)

I V I- '

Covariance Estimator

The covariance estimator performs the operation:

N-i

E x(n) (B-14)

1 Nn-
n,,O
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where

x(n) = Re {uI(n) u2*(n)} (B-15)

The mean and variance of x can be found from the expression developed

in Appendix A.

-- 2
x = 2 2 Pu (B-16)

S2 4 (au2 + Pu2 X 2 (B-17)

The x variable is averaged to form an estimate of the covariance.

The covariance estimate X is Gaussian distributed with a mean and

variance

2 N-i -
o P u(n) 

(B-18)

n=O

8a4 N-I

aI2 0N - [cu 2(n) + pu2(n) - u2(n)] . (B-19)
1 2 uu

n=O

Power Estimator

The power level estimate is:

N-i N-I

N L ul(n) ul*(n) + N L u2 (n) u2*(n) (B-20)
n-0 n-0

The power level estimator is assumed to be Guassian with mean and variance:

N-1

X 2 2 1+ 1 a(n) (B-21)

n-0
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4o4 N-1
22  4 + : [ u4(n) + 20u2(n) + 2 Xu2(n) . (B-22)

2 [N Nn+ ~ ) 2 N n

The covariance between the power level estimate and the covariance

estimate is:

8 4  N-I

No N T u 1 + a2()(B-23)
n-0

Test Statistic

The test statistic is the weighted difference of the covariance

estimate and the power level estimate

- GX2G " (B-24)

The mean variance of the test statistic is:

N( N-i
S2a E p(n) - G i +a 2(n) (B-25)

4 N-I
2 4% 2 2 2 2

a - cu(n) + pu(n) - Xu(n)i
c -N N . (L uu

n-0

G2  2  N-

[ 2 ( n ) + 2 +u(n)+ 2 Pu2(n)]

n-l

N-I

- u (n) I + CL2 (n) (B-26)

n-0
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For the case of noise only and the noise and decorrelator are

perfectly matched, the mean and variance is:

2
Xc In =-

4 aN G (B-27)

c~c n N 1 +2 G (B-28)

The signal present hypothesis is selected if the test statistic is

greater than zero. The probability of false alarm is given by

~fa 2 C2 l - ef

Pf 2 -lerf( vr2-N.jJ (B-29)

Pf 1[l erf ( x cs+n (B-30)

fa 2 : 11

clsI'
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